Benha University Shoubra Faculty of Engineering Electrical Engineering Department

Optical Comm. 4th level

Sheet 1
1. Optoelectronic devices works on
a) Light
b) electrical current
c) Both A and B
d) None of the above
2. Which among the following devices work on the basis of photo-
voltaic effect?
a) Photo-diode
b) LED
c) LCD
d) None of the above
3. The transducer used in television transmission works on the principle
of
a) Electromagnetic Induction
b) Photoelectric effect
c) Rayleigh's effect
d) None of the above
4. Important applications of optoelectronics are
a) Optocoupler
b) Optical fiber communications
c) Both A and B
d) None of the above
5 is an electronic component that transfers electrical signals

between two isolated circuits by using light.

a) Phototube

b) Photocoupler

c) Photodiode

d) None of the above
 6. A is a device that converts incident photons into an electrical signal. a) Photomultiplier b) Photocoupler c) Photodiode d) None of the above
 7. A cell is an electronic device that directly converts sun's energy into electricity. a) photo-voltaic b) photocoupler c) photodiode d) None of the above
 8. Light-emitting diode is a semiconductor diode. a) P-P b) P-N c) N-N d) None of the above
9 is a source of highly monochromatic, coherent and directional light. a) LED b) Laser Diodes c) Both A & B d) None of the above
10. The term optoelectronics is a specific discipline of electronics that focuses on light-emitting or light-detecting devices. a) True b) False
11.Is solar cell an optoelectronic device?a) Yesb) No

12 is the science and technology of generating, controlling, and
detecting photons, which are particles of light.
a) Photoelectronics
b) Photonics
c) Optonic
d) None of the above
13. How does light travel through the cable?
a) Refraction and Reflection
b) Refraction only
c) Dispersion
d) Total Internal Reflection
14. Velocity of light in free space
a) increases linearly
b) remains constant
c) decreases
d) increases exponentially
15.In a phototransistor, the base current is
a) Set by a bias voltage
b) Directly proportional to light
c) Inversely proportional to light
d) Square to light intensity
u) Square to light intensity
16. The general condition for a phototransistor is
a) Common base configuration
b) Common collector configuration
c) Common emitter configuration
d) Darlington-pair configuration
17.Emission of light in an LED results due to
a) Emission of electrons
b) Photovoltaic effect
c) Generation of electromagnetic radiation
d) Conversion of heat to electrical energy

- 18. The combined package of LED and a photodiode is known as
- a) Optocouplers
- b) Opto isolator
- c) Optically coupled isolator
- d) All of the above
- 19.To display the digit 8 in a seven-segment indicator
- a) C must be lighted
- b) G must be off
- c) F must be on
- d) All segments must be lighted
- 20.LEDs can be fabricated using
- a) silicon
- b) Germenium
- c) Carbon
- d) GaAs
- 21. The colour of LED depends on
- a) type of the semiconductor
- b) polarity of voltage
- c) intensity of current
- d) strength of magnetic field
- 22.A Device which converts light energy into electrical energy is called
- a) LED
- b) Photodetector
- c) LASER
- d) DISPLAY
- 23.CRT is found in LED Tvs
- a) Yes b) No

problems:

(1) If the accelerating voltage in an electron gun of CRO is 3 kV, what is the kinetic energy of the electrons in the beam?

$$KE = eV$$
 $KE = 1.6x10^{-19} x 3000$
 $KE = 4.8 x10^{-16} J$

(2) What is the velocity of an electron that has been accelerated by the 2.5 kV anode voltage of a television picture tube?

```
The charge on an electron is 1.6 \times 10^{-19} C

The mass of an electron is 9.1 \times 10^{-31} kg

\mathbf{KE} = \mathbf{eV}

\mathbf{KE} = 1.6 \times 10^{-19} \times 2500

\mathbf{KE} = 4.0 \times 10^{-16} \, \mathbf{J}

\mathbf{KE} = \frac{1}{2} \, \mathbf{mv}^2

4.0 \times 10^{-16} = 0.5 \times 9.1 \times 10^{-31} \, \mathbf{x} \, \mathbf{v}^2

4.0 \times 10^{-16} = 4.55 \times 10^{-31} \, \mathbf{x} \, \mathbf{v}^2

4.55 \times 10^{-31}

8.79 \times 10^{14} = \mathbf{v}^2

V = 29649973 \, \text{m/s} (2.96 \times 10^7 \, \text{m/s})
```

(3) 2.2×10^{14} electrons reach the anode per second in CRO. What is the current?

```
I = N q

I = 2.2 \times 10^{14} \times 1.6 \times 10^{-19}

I = 0.0000352 A

Or I = 3.52 \times 10^{-5} A
```

(4) The acceleration voltage between the cathode and anode is 8000 V. Calculate the kinetic energy of one electron when it has reached the anode.

```
Charge on 1 electron e = 1.6 \times 10^{-19}C

KE = eV

KE = 1.6 \times 10^{-19} \times 8000
```